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Using first-principles data for the elastic properties of PbTe, AgSbTe2, and related compounds, we extend
our previous theoretical study of the thermodynamics of PbTe-AgSbTe2 and present an in-depth analysis of the
effects of elastic strain on the thermodynamics of ordering and coherent solvus boundaries. We find that the
substitutional site preference for Pb in ordered AgSbTe2 and the large asymmetry of the PbTe-AgSbTe2

miscibility gap share a common physical origin in the peculiar defect energetics of AgSbTe2. In particular, we
find that Pb substitution on Ag sites has approximately the same energy cost as a complex defect consisting of
Pb substitution on an Sb site combined with an SbAg antisite defect. Configurational entropy contributions
strongly favor the latter, explaining why Pb substitutes almost exclusively on the Sb sites in AgSbTe2. Coher-
ency strain is shown to increase the solubility limits by a factor of �2 relative to the bulk values both for
Ag,Sb in PbTe and for Pb in AgSbTe2.
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I. INTRODUCTION

Recently, a high thermoelectric figure of merit ZT�2 �at
T=800 K� has been observed in bulk inhomogeneous
AgPbmSbTe2+m alloys.1 While these measurements have
demonstrated the exciting promise of these materials for
thermoelectric power generation, they have also underscored
the current lack of understanding of the structure and phase
stability of lead-antimony-silver-telluride �LAST� alloys. In-
deed, contradictory experimental assessments have been
made for the isoplethal PbTe-AgSbTe2 section of the phase
diagram: full miscibility2–4 and a miscibility gap5 between
rocksalt PbTe and AgSbTe2 have both been reported, with
the AgSbTe2 compound found to either have a disordered
�Ag,Sb� cation sublattice6 or to exhibit signs of cation order.7

However, recent work has begun to clarify these issues:
strong evidence for the existence of a miscibility gap �at least
away from the isoplethal PbTe-AgSbTe2 section� has been
found in recent measurements.1,7–9 First-principles calcula-
tions were able to identify10,11 the type of cation ordering in
AgSbTe2, and, recently, we investigated11 the thermodynam-
ics of the solid Pb-Ag-Sb-Te alloy system from first-
principles density-functional theory �DFT� calculations. As
shown in Fig. 1�a�, we found that the isoplethal
PbTe-AgSbTe2 section of the phase diagram exhibits a
highly asymmetric miscibility gap between the binary PbTe
and the ordered ternary AgSbTe2 phases, with miscibility
limits of �0.6% �for Ag,Sb in PbTe� vs �8% �for Pb in
AgSbTe2� at T=850 K. We also found that AgSbTe2 �which
we predicted to remain ordered up to the experimental melt-
ing temperature� exhibits a strong Pb substitutional prefer-
ence for Sb sites, as can be seen from the composition profile
shown in Fig. 1�b�.

The physical origin of the strong Pb site preference and
the asymmetry of the miscibility gap were not given a de-
tailed analysis in Ref. 11. Furthermore, the approach of Ref.
11 did not give an explicit account for the strain interactions
that appear in a coherent phase-separating system and their
effect on the coherent solvus boundaries. Here, we analyze

the elastic properties of PbTe, ordered AgSbTe2, and related
compounds. Using these data, we extend the investigation of
Ref. 11 by analyzing the effects of strain on atomic ordering.
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FIG. 1. �Color online� �a� Solid-state phase diagram of rocksalt-
based �PbTe�1−x�AgSbTe2�x/2, as calculated in Ref. 11, showing the
boundaries of the immiscible disordered � and � solid solution
phases �circles� and the order-disorder transition temperature Tord

for the ordered AgSbTe2 phase �diamonds�. Also marked is the
experimental melting temperatures Tm of pure bulk AgSbTe2. �b�
Variation in the atomic composition of �111� cation layers in the
vicinity of a �111� boundary between PbTe �negative positions� and
ordered AgSbTe2 �positive positions�, as calculated in Ref. 11.
Within the AgSbTe2 phase, Pb has a strong preference for the Sb
sublattice.
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We further identify the physical origin for the Pb substitu-
tional site preference and for the asymmetry of the miscibil-
ity gap which, as we show, are both related to the peculiar
energetics of various substitutional and antisite defects in
AgSbTe2.

The rest of the paper is organized as follows. In Sec. II,
we present our first-principles results for the elastic proper-
ties of select LAST structures �in Sec. II A, for pure PbTe
and ordered AgSbTe2, and in Sec. II B, for hypothetical
rocksalt SbTe and AgTe�; we find that strain deformations do
not alter the ordering energetics and that the universal soft-
ness of �111� direction can be related to the selection of the
ordering type in AgSbTe2. In Sec. III, we analyze the pecu-
liar substitutional defect energetics in PbTe and AgSbTe2
and develop a simple model for the resulting entropy contri-
butions, which explains the Pb substitutional site preference
and the asymmetry of the miscibility gap in the absence of
strain interactions. In Sec. IV, we combine the results of the
preceding sections to analyze the effect of coherency strain
on the miscibility gap; we find that, in a coherently precipi-
tating system, the solubility limits inside both the precipitates
and the matrix are substantially increased relative to the un-
strained bulk values �roughly to �1% for the Ag,Sb solubil-
ity in PbTe vs �15% for the Pb solubility in AgSbTe2�. The
summary is presented in Sec. V.

II. ELASTIC PROPERTIES OF LAST STRUCTURES

The DFT calculations of the deformation energies were
performed in the scalar-relativistic local-density approxima-
tion �LDA� �Ref. 12� to the DFT �Ref. 13� using projector-
augmented wave potentials14 as implemented in the VASP

code.15 The spin-orbit corrections have only a small effect on
the energy differences between similar �Ag,Pb,Sb�Te struc-
tures, as we discussed earlier in Refs. 11 and 16: for ex-
ample, they change the energy difference between the two
ordered AgSbTe2 structures, L11 and D4, by only 0.6
meV/cation.16 The effect of the generalized-gradient correc-
tions is likewise small.16 All the relevant total-energy differ-
ences were numerically converged to approximately 1 meV/
cation. The convergence of the deformation energies was
established by comparing calculations with a basis set energy
cutoff Ecut=300 eV and k meshes of �5000 /Natoms k-points
in the first Brillouin zone to those with Ecut=350 eV and
�16 000 /Natoms k-points �here Natoms is the number of atoms
in the supercell�. Gaussian smearing of 0.1 eV was used for
relaxation runs, and the highly accurate tetrahedron method
with Blöchl corrections was used for all the calculations in
the final relaxed geometries and for the epitaxial calcula-
tions. For the epitaxial calculations, the uniaxial deformation
parameter �the c /a ratio� and the cell-internal atomic posi-
tions were optimized for each value of the in-plane lattice
constant �defined by uniformly expanding or contracting the
specified atomic plane�, and the resulting total energy per
cation, minus the total energy of the unstrained material, was
defined as a deformation energy.

A. PbTe ÕAgSbTe2 system

We calculated the elastic deformation energies of pure
PbTe and two fully ordered pure AgSbTe2 structures with

L11 and L10 cation orderings under both hydrostatic and ep-
itaxial strains. Figure 2 shows the ordered L11 and L10 struc-
tures, as well as the predicted D4 ground-state structure of
AgSbTe2, which is closely related to L11. Structures L11 and
D4 were identified in Refs. 10 and 11 as nearly degenerate
cation ordering types in AgSbTe2 while L10 has a consider-
ably higher energy and is included here for comparison. The
two lowest-energy structures L11 and D4 possess strong
structural similarities:17 for instance, the number of like and
unlike neighbor ions with any given separation is identical
for both structures; similarly the average three-body correla-
tions are all equal. �Here a three-body correlation function
corresponding to a triplet cluster f is the sum � f =�n=0

3 �
−1�nNf�Ag3−nSbn�, where Nf�Ag3−nSbn� is the number of
AgnSb3−n triplets per lattice site and f refers to all the in-
stances of a given geometric combination of ideal lattice
sites �e.g., a triangle formed by three nearest-neighbor atoms
within fcc�. This definition naturally appears within the
cluster-expansion approaches �see Refs. 16–18 for further
discussion�.� We thus used the smaller-size L11 for our elas-
tic calculations19 �the small deviation of the planar geometry
of L11 from that of cubic structures was fixed to the un-
strained value�. We found that the deformation energies for
the orientations made inequivalent by the trigonality in L11

�e.g., for �111� vs �1̄11� epitaxial planes� agree within 3
meV/cation. To visualize the relative effect of strain on the
constituents, we further define the coherent strain energy Ecs
as the energy of infinite-period A/B �e.g., AgSbTe2 /PbTe�
superlattices at a fixed composition x, i.e., �A�N�1−x��B�Nx as
N→�,

ECS = min
a���aA,aB�

��1 − x�Estrain�A, k̂,a�� + xEstrain�B, k̂,a��� ,

�1�

where Estrain�A, k̂ ,a��=E�A, k̂ ,a��−E�A,aA� is the epitaxial

strain energy20 of material A deformed along direction k̂ in
such a way that the in-plane lattice constant is given by a�

�taken relative to the undeformed energy of the same mate-
rial A at its own equilibrium lattice constant aA�.

We find that PbTe is generally harder than AgSbTe2 and
that in both PbTe and AgSbTe2 the softest direction is �111�
and the hardest is �100�. This is illustrated in Fig. 3, where
we plot the strain energies of infinite-period PbTe /AgSbTe2

FIG. 2. Different types of ordering of Ag and Sb on the cation
sublattice of AgSbTe2: the trigonal L11 and cubic D4 are the nearly
degenerate ground states found in Refs. 10 and 11; L10 is used here
for comparison. For visual clarity, the Te sublattice �the anion sub-
lattice of the underlying rocksalt lattice� is not shown.
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superlattices in selected directions as functions of the total
composition, together with the interpolated directional de-
pendence of the strain energy for equal-period
PbTe /AgSbTe2 superlattices �the interpolation was per-
formed using Kubic harmonic functions21�. This hardness of
�100� and the softness of �111� directions is generally ex-
pected from the rocksalt structures, which have bonds paral-
lel to �100� direction.22 In Fig. 4, we plot the epitaxial strain
energies along the softest and the hardest directions, as well
as the hydrostatic strain energy. We see that, in particular, the
energy difference between the two different ordered
AgSbTe2 structures �the solid and the dotted blue curves� is
largely unaffected by the strain. Furthermore, in a separate
calculation, we found that even the small energy difference
�1.7 meV/cation� between the competing ground-state struc-
tures L11 and D4 is not affected by the coherency strain from
PbTe matrix: restricting the c /a ratio of the L11 structure to
the ideal cubic rocksalt value and distorting both L11 and D4
to the lattice constant of PbTe still yields the same 1.7 meV
difference in favor of D4. We therefore conclude that the
strain has negligible effects on the type and relative energet-
ics of cation ordering at a fixed composition. However, as
will be shown in Sec. IV, the strain will affect the composi-
tions of coherently coexisting immiscible phases.

In Table I, we present the calculated elastic parameters of
PbTe and AgSbTe2. Note that, for an anisotropic material,
Poisson’s ratio �defined as �=−�xx /�zz, the ratio of the in-
plane to out-of-plane strain under a fixed uniaxial strain �zz�

not only depends on the deformation direction but also takes
different values for different transverse directions.22,23 Here
we first define a similar ratio f =−�xx /�zz under a fixed epi-
taxial in-plane strain �xx=�yy and then use it to define an
“effective” Poisson’s ratio via the isotropic-case relationship
f = �1−�� /2�. We see from Fig. 3 and Table I that there is a
considerable anisotropy in the elastic properties of both PbTe
and AgSbTe2. Also, by fitting the first-principles data to
fourth-order polynomials, we find that nonlinear contribu-
tions to the elastic energies in Fig. 4 constitute over 30% for
some points. In principle, a rigorous treatment of the elastic
strain in a coherent PbTe /AgSbTe2 system would thus re-
quire a general solution of a problem in an anisotropic non-
linear elastic system, which in turn would require determina-
tion of all the linear and nonlinear elastic constants far
beyond the basic analysis presented in Table I. For our study
of the effect of the strain on the compositions of coherent
phases, we did not attempt to perform such an exhaustive
analysis. Instead, we approximated the complicated inhomo-
geneous strain effects by a simple model of an isotropic
spherical inclusion in an isotropic environment with similar
elastic moduli, using linear elasticity theory with a Poisson
ratio ��1 /3 �which gives a reasonable approximation to the
effective � values in Table I�.

B. Rocksalt AgTe/SbTe system

The energetic preference for L11 AgSbTe2 over L10
AgSbTe2 can be related to the underlying strain energetics of
hypothetical AgTe and SbTe phases with the rocksalt struc-
ture. The process of forming ordered short-period superlat-
tices �such as L11 and L10� from these rocksalt phases can be
broken down into two steps. In the first step, rocksalt AgTe
and SbTe are epitaxially deformed in the �111� �or �100��
plane to a common lattice constant. In the second step, or-
dered short-period �AgTe�1�SbTe�1 superlattices along the
�111� ��100�� direction are formed to obtain ordered L11
�L10�. The elastic deformation energy associated with the
first step is offset by interfacial energy gain in the second
step due to fully satisfying the chemical charge balance be-
tween the preferred Ag1+, Sb3+, and Te2− ionic states of the
constituent elements. We find that �111� is again the softest
direction in both AgTe and SbTe. Moreover, as we illustrate
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FIG. 3. �Color online� The strain energy of infinite-period
N→� superlattices �AgSbTe2�N�1−x��PbTe�Nx as a function of net
composition x for selected orientations of superlattice interfaces
�left�, and the interpolated direction dependence of the strain energy
at x=0.5 �right�.

FIG. 4. �Color online� Energies of PbTe �black� and of AgSbTe2 with L11 �blue solid line� and L10 �blue dotted line� cation ordering vs
in-plane lattice constant under epitaxial or hydrostatic �“volume”� deformations �as indicated above the individual plots�, relative to the
energies of the unstrained PbTe and of L11-ordered AgSbTe2. The lines are the fourth-order fits to the data �more data was used for fitting
than actually shown�. For the trigonal L11 structure, the epitaxial energies for the nonequivalent �111� and �−111� directions differ by less
than 2 meV/cation.
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in Fig. 5, this direction is particularly soft in rocksalt SbTe.
Even though no imaginary frequencies in the calculated pho-
non spectrum24 were found, the material appears to be on the
verge of instability. Indeed, epitaxially strained SbTe adopts
changes of the in-plane lattice constant a� ranging from 5.8
to 6.4 Å with a corresponding energy change of only a few
meV/cation, as seen in the left panel of Fig. 5. Therefore,
creating the L11-ordered AgSbTe2 �a �111� based superlat-
tice� via the above two-step process requires negligible elas-
tic energy penalty, compared to �100 meV /cation penalty
for the �100� superlattice structure L10, while gaining a simi-
lar amount of chemical energy by fully satisfying the charge
balance requirements. While the formation of D4 cannot be
given a simple superlattice interpretation, within the
reciprocal-space constituent strain formalism25 the strain
contribution to the formation energy of D4 is expected to be
exactly the same as for L11 �Ref. 26� due to the identical
values of pair-correlation functions in these structures. These
intuitive considerations agree very well with the actual en-
ergy differences between fully relaxed D4, L11, and L10
AgSbTe2 structures.

III. SUBSTITUTIONAL DEFECT ENERGETICS AND THE
PHASE DIAGRAM IN THE ABSENCE OF STRAIN

Here we analyze the effects that are responsible for the
peculiar site preference of substitutional Pb in AgSbTe2

and the asymmetry of the miscibility gap in the
PbTe-AgSbTe2 system and show that these effects stem
from the interplay between the energies of the substitutional
defects in PbTe and AgSbTe2. Table II summarizes our
directly calculated LDA values of the formation energies of
key defects, as well as the values predicted by the cluster
expansion �CE� of Ref. 11. �For consistency with Ref. 11,
the defect energies are expressed in terms of the forma-
tion energy differences; in turn, the formation energy
of a Pb1−x−yAgySbxTe structure � is defined with respect
to the pure rocksalt tellurides as �H��� = Etot���
− �1−x−y�Etot�PbTe�−xEtot�AgTe�−yEtot�SbTe�, where both
Etot and �H are per cation site.�

Table II shows that Pb substitution on a Ag site �PbAg

defect� in D4-ordered AgSbTe2 has a very high energetic
cost in comparison with other substitutional �PbSb� and anti-
site �AgSb, SbAg� defects. In the cluster expansion of Ref. 11,
this was reflected by a largeness of the three-body interac-
tions, which are generally known to lead to an asymmetry in
the phase diagram. However, in the case of LAST alloys, the
predicted asymmetry in the solubility limits can be explained
on a deeper physical level. In particular, the data in Table II
show that the cost of PbAg in the AgSbTe2 phase
��E�PbAg�=0.73 eV� is nearly the same as the net cost
of PbSb+SbAg “complex defect” ��E�PbSb�+�E�SbAg�
=0.76 eV�. We show below that the latter complex defect
gives a larger contribution to the configurational entropy and

TABLE I. Elastic constants of PbTe and L11-ordered AgSbTe2 as given by LDA: the lattice parameter a, the bulk modulus B, the ratio
of the in-plane to out-of-plane strain under an epitaxial load f �for different directions�, and the corresponding “effective Poisson ratio” ��f�
�the same ratio under a uniaxial load�, as defined in the text. �The error in � corresponds to the numerical fit error for f �not shown�; for the
nonequivalent directions in trigonal AgSbTe2, the values of f corresponding to both directions are given and the difference is included into
the error in �.�

Deformation direction

PbTe L11-ordered AgSbTe2

a �Å� B �1010N m−2� f � a �Å� B �1010N m−2� f �

bulk 6.38 5.0 5.94 6.8

�001� 3.5 0.13	0.02 2.5 0.16	0.03

�110� 1.08 0.32	0.02 1.03–1.08 0.32	0.03

�111� 0.76 0.40	0.01 0.80–0.82 0.38	0.01
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FIG. 5. �Color online� Left: Deformation energies of rocksalt AgTe �black� and of hypothetical rocksalt SbTe �blue� vs in-plane lattice
constant under �111� epitaxial deformation. Center: the strain energy of infinite-period N→� superlattices �AgTe�N�1−x��SbTe�Nx as a
function of net composition x for selected orientations of superlattice interfaces. Right: the interpolated direction dependence of the strain
energy of the infinite-period AgTe/SbTe superlattices at the equiatomic composition.
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is therefore expected to dominate at sufficiently high tem-
peratures.

We next use a mean-field ideal solution approximation27

to estimate the entropy associated with Pb substitutional de-
fects in AgSbTe2. We consider an ordered AgSbTe2 with a
1:1 ratio of Ag and Sb, assuming a total of N cation sites, of
which xN sites are substitutionally alloyed by Pb. We first
consider the case for which Pb is uniformly distributed be-

tween Ag and Sb sites, and alternatively the case for which
Pb is preferentially distributed on Sb sites.
Uniform distribution of Pb on Ag/Sb sites. If the defect en-
ergies were the same for Pb substitution on Ag and Sb sites
�or, generally, if one had �E�PbAg�
�E�PbSb�+�E�SbAg�
and �E�PbSb�
�E�PbAg�+�E�AgSb��, Pb atoms would be
distributed uniformly between the Ag and Sb sublattices of
the ordered AgSbTe2 phase. In this scenario, xN /2 sites in
each of the Ag and Sb sublattices would be occupied by Pb,
and �1−x�N /2 sites would be occupied by Ag and Sb each,
yielding the following mean-field expression for the configu-
rational entropy of mixing in the ideal solution approxima-
tion:

SAgSbTe2

0 = − kBN�x ln x + �1 − x�ln�1 − x�� . �2�

Preferential distribution of Pb on Sb sites. On the other hand,
if one assumes that a total number xN of Pb atoms occupy
exclusively the N /2 sites of the Sb sublattice, and xN /2 Sb
atoms create antisites within the Ag sublattice to preserve the
1:1 ratio of Ag to Sb, then the mean-field mixing entropy is

SAgSbTe2
� = − kBN/2�2x ln�2x� + x ln x + �1 − 2x�ln�1 − 2x�

+ �1 − x�ln�1 − x�� . �3�

Note that as long as x�1 /3, SAgSbTe2
� �SAgSbTe2

0 . Further-
more, the entropy can be shown to increase monotonously
between these two limiting cases, as the fraction of Pb atoms
occupying the Ag sublattice is changed from 1

2 to 0. Thus, at
T ��E�PbAg�−�E�PbSb�−�E�SbAg�� /kB�300 K, Pb-
doped AgSbTe2 acquires additional entropy by creating SbAg
antisites necessary to accept all Pb within the Sb sublattice.
This simple model explains the Monte Carlo �MC� results of
Ref. 11, which found that for 11% Pb-doped AgSbTe2 at T
=750 K, the vast majority of substitutional Pb atoms �92%�
occupied the Sb sublattice �cf. Fig. 1�b��.

This additional entropy predicted by this simple mean-
field model can also be used to rationalize the asymmetry of
the miscibility gap in the calculated phase diagram �cf. Fig.
1�a��. The entropy of Ag,Sb-doped PbTe with yN= �1−x�N
cation sites occupied by Ag and Sb �here y=1−x, and it is
assumed that Ag and Sb each occupy half of the yN sites� is
given by

TABLE II. Comparison of cation substitution defect energies in D4-ordered AgSbTe2 and PbTe, as given
by LDA calculations in a 16-atom supercell and by a CE. Here AB means that A impurity occupies the lattice
site that, in the absence of the defect, is occupied by B.

Reference
compound Defect

�ELDA= ��HLDA�defect�−�HLDA

�reference�� �meV/defect�
�ECE= ��HCE�defect�−�HCE

�reference�� �meV/defect�

D4 AgSb 343.8 287.3

SbAg 364.3 270.2

PbSb 392.9 282.0

PbAg 727.1 550.0

PbTe AgPb 637.1 476.0

SbPb 402.8 381.0
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FIG. 6. �Color online� Model free energies of PbTe �blue� and
AgSbTe2 �red� phases as a function of composition, for different
cases of strain distribution, at T=850 K. Black lines show
common-tangent constructions. �a� Unstrained bulk phases �solid
lines� in the absence of strain: solubility limits are 0.2% vs 7%. The
dashed red line corresponds to a hypothetical alternative model for
Pb-doped AgSbTe2 as discussed in the text �displaced Sb separating
as rocksalt SbTe, instead of moving to antisites�. �b� Coherent
�strained� AgSbTe2 precipitates inside PbTe matrix. The strain in-
creases the solubility limits to 1% vs 16%.
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SPbTe = − kBN�y ln y + �1 − y�ln�1 − y��

− kB�yN�	1

2
ln
1

2
� +

1

2
ln
1

2
�� . �4�

Neglecting the possible imbalance of Ag and Sb content and
using the above expressions for SAgSbTe2

� and SPbTe, as well as
the energies obtained from the CE of Ref. 11 �listed in Table
II�, the free energies of the doped phases can be estimated, as
illustrated by the solid lines in Fig. 6�a�. A common-tangent
construction yields strongly asymmetric solubility limits of
0.2% for Ag,Sb in PbTe and 7% for Pb in AgSbTe2 at 850 K,
in close agreement with the results of our detailed MC study.

In the discussion above, we assumed that the entropy gain
given by Eq. �3� is sufficient to overcome the energetic cost
of creating SbAg antisites. The dashed red line in Fig. 6�a�
represents an alternative scenario in which the displaced Sb
phase is assumed to phase separate as a separate rocksalt
SbTe phase; indeed, we see that this scenario is energetically
unfavorable.

We note in passing that using the defect energetics ob-
tained from direct LDA supercell calculations �see Table II�
instead of the CE-predicted energies yields a similar asym-
metry but smaller solubility limits: 0.1% and 2%, respec-
tively. This may in fact indicate that the CE of Ref. 11 over-
estimates the solubility limits due to underestimating the
defect energies �cf. Table II�. We found, however, that refit-
ting the CE using the additional LDA energies of isolated
defects results in a better agreement between the LDA and
CE energies for the isolated defects listed in Table II but
gives very little change in the miscibility limits at
T=850 K. It is thus possible that the energetics of more
complex defects, described by the CE but neglected in the
above model, affects the actual values of the miscibility lim-
its.

IV. EFFECT OF STRAIN ON PHASE EQUILIBRIA

We now combine the results obtained in Secs. II and III to
evaluate the effect of the coherency strain on the composi-
tions and coherent solvus boundaries of the immiscible co-
herent phases, compared to those shown in the unstrained
�bulk� phase diagram of Fig. 1�a�. Neglecting elastic aniso-
tropy, difference in the elastic constants of the precipitate and
the matrix, and size-dependent contributions from the inter-
facial energy,28 the contribution �Fel to the free energy due
to a coherent matching of a precipitate of volume V to the
matrix is

�Fel = VE�2/�1 − �� , �5�

where � is the lattice mismatch, E is Young’s modulus and �
is the Poisson ratio. Using Vegard’s law, the variation in the
mismatch � with the Pb content x in AgSbTe2 can be ap-
proximated as ��x�=x�aAgSbTe2

−aPbTe� /aav, where aAgSbTe2

and aPbTe are the unstrained lattice constants and aav
= �aAgSbTe2

+aPbTe� /2. Assuming that the volume of the PbTe
matrix is much greater than the net volume of the AgSbTe2
precipitates and taking into account the low solubility of Ag
and Sb, the effect of changing composition of PbTe on � can
be neglected.

Combining Eq. �5� with mean-field expressions �3� and
�4� for the entropy, we obtain the model free-energy curves
shown in Fig. 6�b�. Comparing these results with the inco-
herent free energies in Fig. 5�a�, we see that, within the same
entropy model, the elastic strain increases the coherent solu-
bility of Pb in AgSbTe2 from 7% to 16%, and the solubility
of �Ag,Sb� in PbTe from 0.2% to 1%. Note that the actual
coherent solubility limits may, however, be smaller due to
the above-noted underestimate of the isolated defect energies
in the CE.

A similar model can be applied to PbTe precipitates inside
a AgSbTe2 matrix, yielding the same numerical results.
However, in the case of PbTe precipitates, this simple model
overestimates the effect of strain. Indeed, due to the large
solubility of Pb in the AgSbTe2 matrix, the strain around the
precipitates will locally increase the content of Pb in the
matrix, which in turn will partially relieve the strain �both
inside the matrix and in the precipitate�, and will further
lower the free energy by raising the entropy of Pb solute in
the matrix. We did not attempt to estimate the magnitude of
such a strain relief, as it may be less pronounced than the
other effects neglected in our simple model.

V. CONCLUSIONS

In conclusion, we have calculated the energetics of elastic
deformations and substitutional defects for ordered LAST
structures. We demonstrate that the coherency strain in
phase-separating PbTe-AgSbTe2 alloys considerably in-
creases the coherent solubility limits in comparison with the
unstrained bulk limits found in Ref. 11 �at T=850 K, the
�Ag,Sb� solubility in PbTe is increased to roughly �1%, and
the Pb solubility in ordered AgSbTe2 is increased to roughly
�15%�. We also conclude that the strain deformations do not
alter the ordering energetics and demonstrate that the
L11 /D4 ordering predicted10,11 for AgSbTe2 can be related to
the elastic softness of rocksalt SbTe and AgTe/SbTe super-
lattices with respect to epitaxial deformations in the �111�
lattice plane.
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